Affiliation:
1. Department of Mathematics, Central South University, Changsha, Hunan 410083, China
Abstract
Multiple zeta values are the numbers defined by the convergent seriesζ(s1,s2,…,sk)=∑n1>n2>⋯>nk>0(1/n1s1 n2s2⋯nksk), wheres1,s2,…,skare positive integers withs1>1. Fork≤n, letE(2n,k)be the sum of all multiple zeta values with even arguments whose weight is2nand whose depth isk. The well-known resultE(2n,2)=3ζ(2n)/4was extended toE(2n,3)andE(2n,4)by Z. Shen and T. Cai. Applying the theory of symmetric functions, Hoffman gave an explicit generating function for the numbersE(2n,k)and then gave a direct formula forE(2n,k)for arbitraryk≤n. In this paper we apply a technique introduced by Granville to present an algorithm to calculateE(2n,k)and prove that the direct formula can also be deduced from Eisenstein's double product.
Funder
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献