A Note on Bernoulli Numbers and Shintani Generalized Bernoulli Polynomials

Author:

Eie Minking

Abstract

Generalized Bernoulli polynomials were introduced by Shintani in 1976 in order to express the special values at non-positive integers of Dedekind zeta functions for totally real numbers. The coefficients of such polynomials are finite combinations of products of Bernoulli numbers which are difficult to get hold of. On the other hand, Zagier was able to get the explicit formula for the special values in cases of real quadratic number fields. In this paper, we shall improve Shintani’s formula by proving that the special values can be determined by a finite set of polynomials. This provides a convenient way to evaluate the special values of various types of Dedekind functions. Indeed, a much broader class of zeta functions considered by the author [Minking Eie, The special values at negative integers of Dirichlet series associated with polynomials of several variables, Proceedings of A. M. S. 119 (1993), 51–61] admits a similar formula for its special values. As a consequence, we are able to find infinitely many identities among Bernoulli numbers through identities among zeta functions. All these identities are difficult to prove otherwise.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. Ramanujan’s Notebooks

2. On a Dirichlet series associated with a polynomial;Eie, Min King;Proc. Amer. Math. Soc.,1990

3. Lemmes de zéros et intersections;Denis, Laurent,1992

4. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)];van der Geer, Gerard,1988

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiple Convolution Formulae of Bernoulli and Euler Numbers;Indian Journal of Pure and Applied Mathematics;2020-09

2. Zeta functions interpolating the convolution of the Bernoulli polynomials;Integral Transforms and Special Functions;2018-05-31

3. Identities for Apostol-type Frobenius–Euler polynomials resulting from the study of a nonlinear operator;Russian Journal of Mathematical Physics;2016-04

4. Sums of Products of Cauchy Numbers, Including Generalized Poly-Cauchy Numbers;Tokyo Journal of Mathematics;2015-06-01

5. Families of weighted sum formulas for multiple zeta values;International Journal of Number Theory;2015-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3