Detection of Solitary Pulmonary Nodules Based on Brain-Computer Interface

Author:

Qiu Shi1ORCID,Li Junjun2,Cong Mengdi3ORCID,Wu Chun4,Qin Yan4,Liang Ting25ORCID

Affiliation:

1. Key Laboratory of Spectral Imaging Technology CAS, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

2. Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China

3. Department of Computed Tomography and Magnetic Resonance, Children’s Hospital of Hebei Province, Shijiazhuang 050031, China

4. BeiJing Hi-Tech Institute, Beijing 00085, China

5. Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of The Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China

Abstract

Solitary pulmonary nodules are the main manifestation of pulmonary lesions. Doctors often make diagnosis by observing the lung CT images. In order to further study the brain response structure and construct a brain-computer interface, we propose an isolated pulmonary nodule detection model based on a brain-computer interface. First, a single channel time-frequency feature extraction model is constructed based on the analysis of EEG data. Second, a multilayer fusion model is proposed to establish the brain-computer interface by connecting the brain electrical signal with a computer. Finally, according to image presentation, a three-frame image presentation method with different window widths and window positions is proposed to effectively detect the solitary pulmonary nodules.

Funder

Shanxi National Science Foundation

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3