Norvaline Reduces Blood Pressure and Induces Diuresis in Rats with Inherited Stress-Induced Arterial Hypertension

Author:

Gilinsky Michael A.1,Polityko Yulia K.2,Markel Arkady L.23,Latysheva Tatyana V.1,Samson Abraham O.4ORCID,Polis Baruh4ORCID,Naumenko Sergey E.1

Affiliation:

1. Scientific Research Institute of Physiology and Basic Medicine, 4 Timakova Street, Novosibirsk 630117, Russia

2. Federal Scientific Center Institute of Cytology and Genetics, 6, Prosp. M. A. Lavrent’eva, Novosibirsk, Russia

3. Novosibirsk State University, Novosibirsk, Russia

4. Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel

Abstract

Growing evidence suggests that increased arginase activity affects vital bioprocesses in various systems and universally mediates the pathogenesis of numerous metabolic diseases. The adverse effects of arginase are associated with a severe decline in L-arginine bioavailability, which leads to nitric oxide synthase substrate insufficiency, uncoupling, and, eventually, superoxide anion generation and substantial reduction of nitric oxide (NO) synthesis. In cooperation, it contributes to chronic oxidative stress and endothelial dysfunction, which might lead to hypertension and atherosclerosis. Recent preclinical investigations point arginase as a promising therapeutic target in ameliorating metabolic and vascular dysfunctions. In the present study, adult rats with inherited stress-induced arterial hypertension (ISIAH) were used as a model of hypertension. Wistar rats served as normotensive controls. Experimental animals were intraperitoneally administered for seven days with nonproteinogenic amino acid L-norvaline (30 mg/kg/day), which is a potent arginase inhibitor, or with the vehicle. Blood pressure (BP), body weight, and diuresis were monitored. The changes in blood and urine levels of creatinine, urea, and NO metabolites were analyzed. We observed a significant decline in BP and induced diuresis in ISIAH rats following the treatment. The same procedure did not affect the BP of control animals. Remarkably, the treatment had no influence upon glomerular filtration rate in two experimental groups, just like the daily excretion of creatinine and urea. Conversely, NO metabolite levels were amplified in normotonic but not in hypertensive rats following the treatment. The data indicate that L-norvaline is a potential antihypertensive agent and deserves to be clinically investigated. Moreover, we suggest that changes in blood and urine are causally related to the effect of L-norvaline upon BP regulation.

Funder

Russian Foundation for Basic Research

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3