Exploring serum amino acid signatures as potential biomarkers in Hashimoto's thyroiditis patients

Author:

Temiz Ebru12ORCID,Akmese Sukru3ORCID,Koyuncu Ismail4ORCID,Barut Dursun5ORCID

Affiliation:

1. Department of Endocrinology, Diabetes and Nutrition Center Université Catholique de Louvain Brussels Belgium

2. Medical Promotion and Marketing Program, Vocational School of Health Services Harran University Sanliurfa Turkey

3. Pharmacy Services Program, Vocational School of Health Services Harran University Şanlıurfa Turkey

4. Department of Medical Biochemistry, Faculty of Medicine; Science and Technology Application and Research Center Harran University Sanliurfa Turkey

5. Department of Family Medicine, Faculty of Medicine Harran University Sanliurfa Turkey

Abstract

AbstractHashimoto's thyroiditis (HT) is an autoimmune disease caused by the immune system attacking healthy tissues. However, the exact pathogenesis of HT remains unclear. Metabolomic analysis was performed to obtain information about the possible pathogenic mechanisms and diagnostic biomarkers of HT. The amino acid profile was analyzed using an LC–MS/MS method using serum samples obtained from 30 patients diagnosed with ultrasonographic imaging and laboratory markers (thyroid stimulating hormone) free thyroxine and thyroid peroxidase) and 30 healthy individuals. There were statistically significant changes in 27 amino acids out of 32 amino acids analyzed (p < 0.05). Based on the receiver operating characteristic curve analysis, the six amino acid (1‐methylhistidine, cystine, norvaline, histidine, glutamic acid and leucine) biomarkers showed high sensitivity, specificity (area under the curve > 0.98), positive likelihood ratio and low negative likelihood ratio. Also, according to pathway analysis, degradation of phenylalanine, tyrosine and tryptophan biosynthesis was the highest metabolic pathway according to the impact value (p < 0.001 and impact value = 1.0). We provide serum amino acid profiles of patients with Hashimoto's thyroiditis and identify five potential biomarkers for early diagnosis by clinicians.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3