Affiliation:
1. College of Civil Engineering, Tangshan University, Tangshan 063000, China
2. China Railway 15th Bureau Group Co., Ltd., Shanghai 510632, China
Abstract
The high dimensionality of the modern remote sensing data of construction land makes it complicated to extract image data. This paper proposes a dimensionality reduction and extraction strategy for the remote sensing data of construction land, with the aid of building information modeling (BIM) and geographical information system (GIS). Firstly, the BIM was employed to reduce the size of the remote sensing data of construction land and to obtain the information of each element. Next, the remote sensing data of construction land were parsed, and the key BIM elements were extracted through semantic filtering. In addition, the remote sensing data were converted into a triangulated irregular network (TIN), which can be processed by the geographical information system (GIS). In the end, random projection was utilized to reduce the dimensionality and compress the remote sensing data, and realize the data extraction. Experimental results show that our approach can compress and extract the information from construction land images in the remote sensing data with a high accuracy.
Subject
Computer Science Applications,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献