Software for Mapping and Extraction of Building Land Remote Sensing Data Based on BIM and Sensor Technology

Author:

Zhang Shaoping1ORCID,Wan Yaqin2ORCID

Affiliation:

1. Department of Civil Engineering, Jiangxi Institute of Construction, Nanchang, Jiangxi 330200, China

2. Center for Big Data and Smart Campus, Jiangxi Institute of Construction, Nanchang, Jiangxi 330200, China

Abstract

In order to solve the problem of complex extraction caused by large feature dimension of remote sensing data, this paper proposes a dimension compression extraction method of urban building land remote sensing data under BIM Technology. Firstly, the remote sensing data is imported into the BIM model for lightweight processing to obtain the element information required for urban construction land and then analyze the urban construction land data, extract the key elements of BIM Technology through semantic filtering, and use the triangulation method to transform the remote sensing data into the triangulation model that can be processed by GIS model. Finally, the random projection method is used to reduce the dimension and compress the remote sensing data, and the remote sensing data extraction of urban construction land is realized through dictionary learning, vocabulary coding, and feature extraction. The experimental results show that the accuracy of extracting different land use types by this method is more than 99%, while the accuracy of extracting different land use types by depth learning method and PLS method is less than 98.5%. In addition, the signal-to-noise ratio of the image extracted by this method is significantly higher than that by depth learning method and PLS method. Conclusion. This method can effectively compress and extract the urban construction land in the remote sensing data, and the extraction accuracy of remote sensing data is high. It provides a technical basis for the approval of urban construction planning. It has the advantages of simple feature extraction and effective differentiation of ground objects.

Funder

Education Department of Jiangxi Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference22 articles.

1. Stochastic optimal control of hvac system for energy-efficient buildings;Y. Yang;IEEE Transactions on Control Systems Technology,2021

2. Selection and testing of phase change materials in the physical models of buildings for heating and curing of construction elements made of precast concrete

3. Design of Multi-Information Fusion Based Intelligent Electrical Fire Detection System for Green Buildings

4. Risk assessment of confined unreinforced masonry buildings based on FEMA P-58 methodology: a case study—school buildings in Tehran

5. Use of bim technology and impact on productivity in construction project management;P. Mesáro;Wireless Networks,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3