Enhancing the Hybrid Microgrid Performance with Jellyfish Optimization for Efficient MPPT and THD Estimation by the Unscented Kalman Filter

Author:

Singh Nivedita1ORCID,Ansari M. A.1,Tripathy Manoj2,Gupta Pratiksha1,Ali Ikbal3,Rawea Adel Saleh4ORCID

Affiliation:

1. Electrical Engineering Department, Gautam Buddha University, Greater Noida, India

2. Electrical Engineering Department, IIT Roorkee, Roorkee, India

3. Electrical Engineering Department, Jamia Millia Islamia, New Delhi, India

4. Electrical Engineering Department, Lebanese International University, Sana, Yemen

Abstract

Power management in advanced grid systems requires the seamless integration of diverse renewable energy sources. This study investigates the optimization of a grid-connected system comprising a photovoltaic (PV) solar panel, energy storage system, fuel cell (FC), and diesel generator (DG) using the bioinspired metaheuristic technique called jellyfish optimization (JF). The objective is to maximize power generation from the PV system under normal and partial shading conditions. The performance of JF is compared against particle swarm optimization (PSO) using various parameters. As India heavily relies on solar PV, the results highlight JF’s exceptional effectiveness in extracting maximum power during partial shading scenarios. Inspired by the active and passive motions of jellyfish in the ocean, the JF algorithm is utilized. To further optimize the power output, the system is integrated with an efficient battery management system, PEM fuel cell stacking, and diesel generators. The system’s performance is analyzed using fast Fourier transform (FFT) to evaluate harmonic distortions, which consistently meet the limits specified in IEEE STD 1547-2018. Furthermore, unscented Kalman filter-based analysis is employed to assess total harmonic distortion (THD) and power rating for the grid system across various renewable energy scenarios. The contribution of the jellyfish optimization (JF) algorithm lies in its ability to efficiently and effectively maximize power generation from the PV system, regardless of normal or partial shading conditions. JF, a bioinspired metaheuristic optimization technique, successfully emulates the collective behavior of jellyfish in the ocean to identify optimal solutions. In this study, JF outperforms particle swarm optimization (PSO) in terms of power generation under partial shading conditions. Notably, JF exhibits remarkable capability in exploring the search space and discovering the global optimum, even when the system operates under challenging conditions. Overall, this study demonstrates the tremendous potential of JF in maximizing power generation in grid-connected systems with renewable energy sources while also highlighting the benefits of integrating additional components to further enhance the system performance.

Funder

Gautam Buddha University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3