Islanding Event Detection in Grid-Connected Distributed Generation Systems Using Unscented Kalman Filter

Author:

Singh Nivedita1ORCID,Ansari M. A.1,Tripathy Manoj2,Gupta Pratiksha1,Ali Ikbal3,Alward Yahya1,Rawea Adel4ORCID

Affiliation:

1. Electrical Engineering Department, Gautam Buddha University, Greater Noida, India

2. Electrical Engineering Department, IIT Roorkee, Roorkee, India

3. Electrical Engineering Department, Jamia Milia Islamia, New Delhi, India

4. Electrical Engineering Department, Lebanese International University, Yemen

Abstract

A pressing concern in modern smart grid systems revolves around islanding, leading to unpredictable system parameters and a decline in power quality. In response to this concern, we introduce a novel passive method for identifying islanding in grid-connected distributed generation units. This method utilizes the unscented Kalman filter (UKF) to assess the voltage signal captured at the DG position. The triphase voltage signal observed at the point of common coupling (PCC) is used as the test signal. The UKF extracts and filters the harmonic content of the voltage signal to produce a residual signal, which detects changes in the power system. The estimation of total harmonic distortion (THD) follows, and its fluctuations help discern between islanding and typical events. This suggested approach undergoes assessment through a test system simulated in MATLAB/Simulink across different situations. Outcome findings underscore the efficacy of the suggested approach in distinguishing between islanding and regular occurrences, ensuring enhanced reliability and resilience against incorrect operations by removing the zone of nondetection. In our detailed experiments, we found that the proposed unscented Kalman filter (UKF) technique improved islanding detection accuracy by approximately 90% over traditional methods, under varied conditions. Specifically, the nondetection zone (NDZ) was reduced by 95% when compared to the most commonly used passive methods. Furthermore, in scenarios with high harmonic content and noise, the UKF showcased a 90% improvement in reliability over conventional techniques.

Funder

Indian Institute of Technology Roorkee

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3