Time-Harmonic Response of an Elastic Pile in a Radially Inhomogeneous Poroelastic Medium

Author:

Li Xibin1ORCID,Xu Wenhui1,Zhang Zhiqing1ORCID

Affiliation:

1. School of Landscape Architecture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China

Abstract

The time-harmonic response of an elastic pile embedded in a radially inhomogeneous poroelastic medium and subjected to a torsional loading is studied in the present article. In engineering practice, the surrounding soil may be weakened due to the disturbance effect caused by pile driving. To simulate the weakened surrounding soil, a boundary zone model with the complex shear modulus of the inner disturbed soil changing in a parabolic form along the radial direction is proposed. In view of the axis-symmetric deformation of the surrounding soil under torsional load, the equation of motion of the saturated soil is solved in the cylindrical coordinate system. The vibration displacement and shear stress solutions for the inner disturbed soil are gained by expanding the displacement as a power series, and those for the outer undisturbed soil are obtained by solving the partial differential equation. By virtue of continuity conditions at the interface between inner and outer soil regions, the torsional impedance of the radially inhomogeneous soil is solved. Then, via the boundary and continuity conditions of the pile-soil system, the twist angle and torque of the pile are obtained in the frequency domain. Finally, selected numerical results are conducted to investigate the influence of the material damping, softening degree, and softening range of the inner soil on the distribution of the twist angle and torque of the pile along the depth direction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3