New Benchmarking Methodology and Programming Model for Big Data Processing

Author:

Kos Anton1,Tomažič Sašo1ORCID,Salom Jakob2,Trifunovic Nemanja3,Valero Mateo4,Milutinovic Veljko5

Affiliation:

1. Faculty of Electrical Engineering, University of Ljubljana, Tržaška Cesta 25, 1000 Ljubljana, Slovenia

2. Mathematical Institute of the Serbian Academy of Sciences and Arts, Knez Mihailova 36, 11001 Belgrade, Serbia

3. Maxeler Technologies Ltd., 1 Down Place, London W6 9JH, UK

4. Barcelona Supercomputing Center, Carrer de Jordi Girona 29, 08034 Barcelona, Spain

5. School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia

Abstract

Big data processing is becoming a reality in numerous real-world applications. With the emergence of new data intensive technologies and increasing amounts of data, new computing concepts are needed. The integration of big data producing technologies, such as wireless sensor networks, Internet of Things, and cloud computing, into cyber-physical systems is reducing the available time to find the appropriate solutions. This paper presents one possible solution for the coming exascale big data processing: a data flow computing concept. The performance of data flow systems that are processing big data should not be measured with the measures defined for the prevailing control flow systems. A new benchmarking methodology is proposed, which integrates the performance issues of speed, area, and power needed to execute the task. The computer ranking would look different if the new benchmarking methodologies were used; data flow systems would outperform control flow systems. This statement is backed by the recent results gained from implementations of specialized algorithms and applications in data flow systems. They show considerable factors of speedup, space savings, and power reductions regarding the implementations of the same in control flow computers. In our view, the next step of data flow computing development should be a move from specialized to more general algorithms and applications.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3