Identifying Key Classes Algorithm in Directed Weighted Class Interaction Network Based on the Structure Entropy Weighted LeaderRank

Author:

Jiang Wanchang1ORCID,Dai Ning1

Affiliation:

1. School of Computer Science, Northeast Electric Power University, Jilin 132012, China

Abstract

Identifying key classes can help software maintainers quickly understand software systems. The existing key class recognition algorithms consider the weight of class interaction, but the weight mechanism is single or arbitrary. In this paper, the multitype weighting mechanism is considered, and the key classes are accurately identified by using four kinds of interaction. By abstracting the software system into the directed weighted class interaction network, a novel Structure Entropy Weighted LeaderRank of identifying key classes algorithm is proposed. First, considering multiple types and directions of interactions between every pair of classes, the directed weighted class interaction software network (DWCIS-Network) is built. Second, Class Entropy of each class is initialized by the software structural entropy in DWCIS-Network; the Structure Entropy Weighted LeaderRank applies the biased random walk process to iterate Class Entropy. Finally, the iteration is completed to obtain the Final Class Entropy (FCE) of each class as the importance score of each class, top-k classes are obtained, and key classes are identified. For two sets of experiments on Ant and JHotDraw, our approach effectively identifies key classes in class-level software networks for different top-k of classes, and the recall rates of our approach are the highest, 80% and 100%, respectively. From top-15% to top-5%, the precision of our approach is improved by 13.39%, which is the highest in comparison with the precisions of the other two classical approaches. Compared with the best performance of the two classical approaches, the RankingScore of our approach is improved by 16.51% in JHotDraw.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3