Parameter Analysis on Hardening Soil Model of Soft Soil for Foundation Pits Based on Shear Rates in Shenzhen Bay, China

Author:

Fu Yanbin123ORCID,He Siyue2ORCID,Zhang Sizhan1ORCID,Yang Yong4ORCID

Affiliation:

1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China

2. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an, Shaanxi 710064, China

3. Underground Polis Academy of Shenzhen University, Shenzhen, Guangdong 518060, China

4. JiZhunFangZhong Chengdu Architectural Design Co., Ltd., Chengdu, Sichuan 610000, China

Abstract

The hardening soil (HS) model is the most commonly used constitutive models of soft soil of foundation pits of PLAXIS software in numerical analysis, and its parameters are prerequisite for accurate calculation. In this paper, relevant parameters of the HS model in Shenzhen Bay in China were studied through one-dimensional consolidation tests and triaxial shear tests. Analytical methods of reference secant stiffness and failure ratio of soft soil were systematically studied, the influence of shear rates on reference secant stiffness and failure ratio of soft soil was analyzed, and the relationship between stiffness parameters and compressive modulus of soft soil was established. The results showed that reference secant stiffness and failure ratio of soft soil obtained by different analytical methods were quite different, and the errors of reference secant stiffness and failure ratio of soft soil obtained by stress-strain curves were the smallest and the stability was the best; at the same time, with increase of shear rates, the peak deviator stress and reference secant stiffness of soft soil increased, but failure ratio did not change much. The research results could provide a reference of parameter analysis of soft soil for the HS model in the numerical analysis and similar working conditions of foundation pits.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3