A Combination of Vision- and Sensor-Based Defect Classifications in Extrusion-Based Additive Manufacturing

Author:

Li Xiao-Yu1ORCID,Liu Fu-Long1,Zhang Meng-Na1,Zhou Ming-Xia1,Wu Chuan1,Zhang Xiao1ORCID

Affiliation:

1. School of Medical Information & Engineering, Xuzhou Medical University, Xuzhou 221000, China

Abstract

Additive manufacturing, also known as 3D printing, has been facing the problem of inconsistent processing defects and product quality as a transformative technology, thus hindering its wide application in industry and other fields. In this context, machine learning (ML) algorithms are increasingly used for automatic classification of process data to achieve computer-aided defect detection. Specifically, in this paper, two data-driven classification prediction models are built by monitoring the sensing signals (temperature and vibration data) and interlayer images during the printing process, using the fused deposition model (FDM) as the base case, and the prediction results of the two machine learning models are fused for prediction. The experimental results show that by fusing the prediction results of the two models, the classification accuracy is significantly higher than the prediction results of a single model. These findings can benefit researchers studying FDM with the goal of producing systems that self-adjust online for quality assurance.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3