A Survey of Image-Based Fault Monitoring in Additive Manufacturing: Recent Developments and Future Directions

Author:

Kim Ryanne Gail1,Abisado Mideth2,Villaverde Jocelyn3,Sampedro Gabriel Avelino145ORCID

Affiliation:

1. Research and Development Center, Philippine Coding Camp, 2401 Taft Ave, Malate, Manila 1004, Philippines

2. College of Computing and Information Technologies, National University, Manila 1008, Philippines

3. School of Electrical, Electronics and Computer Engineering, Mapúa University, Manila 1002, Philippines

4. Faculty of Information and Communication Studies, University of the Philippines Open University, Laguna 4031, Philippines

5. College of Computer Studies, De La Salle University, 2401 Taft Ave, Malate, Manila 1004, Philippines

Abstract

Additive manufacturing (AM) has emerged as a transformative technology for various industries, enabling the production of complex and customized parts. However, ensuring the quality and reliability of AM parts remains a critical challenge. Thus, image-based fault monitoring has gained significant attention as an efficient approach for detecting and classifying faults in AM processes. This paper presents a comprehensive survey of image-based fault monitoring in AM, focusing on recent developments and future directions. Specifically, the proponents garnered relevant papers from 2019 to 2023, gathering a total of 53 papers. This paper discusses the essential techniques, methodologies, and algorithms employed in image-based fault monitoring. Furthermore, recent developments are explored such as the use of novel image acquisition techniques, algorithms, and methods. In this paper, insights into future directions are provided, such as the need for more robust image processing algorithms, efficient data acquisition and analysis methods, standardized benchmarks and datasets, and more research in fault monitoring. By addressing these challenges and pursuing future directions, image-based fault monitoring in AM can be enhanced, improving quality control, process optimization, and overall manufacturing reliability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3