Statistical Downscaling and Projection of Future Air Temperature Changes in Yunnan Province, China

Author:

Liu Jiaxu12ORCID,Chen Sujing12ORCID,Li Lijuan1ORCID,Li Jiuyi1ORCID

Affiliation:

1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China

2. University of CAS, Beijing 100049, China

Abstract

The SDSM was employed for downscaling of daily mean temperature of 32 meteorological stations (1954–2014) and future scenarios were generated up to 2100. The data were daily NCEP/NCAR reanalysis data and the daily mean climate model outputs for the RCP2.6, RCP4.5, and RCP8.5 scenarios from the MRI of Japan. Periodic features were obtained by wavelet analysis. The results showed the following. (1) The pattern of change and the numerical values of the air temperature could be reasonably simulated, with the averageR2between observed and generated data being 0.963 for calibration and 0.964 for validation. (2) All scenarios projected increases of different degrees of temperature in all seasons, except for spring in the 2020s. Annually, the most remarkable changes in the 2020s, 2050s, and 2080s were 0.27, 1.00, and 1.84°C, respectively. Seven dominant periods appeared under RCP4.5 and RCP8.5 from 1954 to 2100; however, an additional period appeared under RCP2.6. (3) In future periods, especially the 2020s, decreases in temperature were significantly located in the center of Yunnan under all three scenarios, whereas there were distinct increases in northwest and southeast Yunnan in most future periods. Besides, the RCP8.5 scenario showed the greatest increase in the 2080s.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3