The Assessment of Future Air Temperature and Rainfall Changes Based on the Statistical Downscaling Model (SDSM): The Case of the Wartburg Community in KZN Midlands, South Africa

Author:

Ncoyini-Manciya ZolekaORCID,Savage Michael J.

Abstract

The agriculture sector in Africa is dominated by small-scale farmers who account for about 80% of the total farms. However, small-scale farmers are vulnerable to climate change and climate variability. Their high susceptibility to climate change emanates from their inadequate ability to adapt to climate change. As a result, small-scale farmers are generally adversely impacted by climate change due to over-reliance on rainfed agriculture and natural resources. This exposure and susceptibility, however, differ across the regions due to the heterogeneity in topography, climate, access to resources, farmer resilience and adaptation capacity. Therefore, site-specific studies are encouraged to increase the awareness, resilience and adaptation capacity at the local level. The study intends to analyse historical climate (air temperature and rainfall) data from a weather station that has not been employed for climate change studies and project possible future changes in the same climate parameters due to global warming for a localised agricultural community within the sugarbelt region of KwaZulu-Natal, South Africa. The study focuses mainly on air temperature and rainfall changes to inform local farmers about potential climate changes and possible impacts of the projected climate changes on the local agricultural productivity. This study was conducted in the KwaZulu-Natal midlands of South Africa, and the Representative Climate Pathways (RCP8.5 and RCP4.5) climate projection of the CanESM2 model were used for the projection of future air temperature and rainfall trends for the 2020s, the 2040s and the 2080s. According to the results, both minimum and maximum air temperatures will continue to increase for the entire study period. The RCP8.5 results indicate that maximum and minimum air temperatures will reach a maximum range of 1.72 to 3.14 °C and 1.54 to 3.48 °C, respectively. For the rainfall, the model projects a positive trend, although all the scenarios predict a declining trend for the near future (2020s) and an increase in the 2050s. These results indicate that, in the absence of adaptation the risk of small-scale farmers, particularly for sugarcane, which is largely planted in the area, the production losses will heighten and hence increase the likelihood of increased poverty, food insecurity and unemployment.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference64 articles.

1. Climate Change 2013–The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. The response of precipitation characteristics to global warming from climate projections

3. Effects of climate change on the hydrological cycle in Central and Eastern Europe;Stagl,2014

4. Evidence of trends in daily climate extremes over southern and west Africa

5. Drought regimes in Southern Africa and how well GCMs simulate them

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3