Evaluation of Shannon Entropy and Weights of Evidence Models in Landslide Susceptibility Mapping for the Pithoragarh District of Uttarakhand State, India

Author:

Dam Nguyen Duc1,Amiri Mahdis2,Al-Ansari Nadhir3ORCID,Prakash Indra4ORCID,Le Hiep Van1ORCID,Nguyen Hanh Bich Thi1,Pham Binh Thai1ORCID

Affiliation:

1. University of Transport Technology, 54 Trieu Khuc, Thanh Xuan, Hanoi 100000, Vietnam

2. Department of Watershed & Arid Zone Management, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan 4918943464, Iran

3. Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 971 87 Lulea, Sweden

4. DDG (R) Geological Survey of India, Gandhinagar 382010, India

Abstract

Landslide susceptibility mapping is considered a useful tool for planning, disaster management, and natural hazard mitigation of a region. Although there are different methods for predicting landslide susceptibility, the bivariate statistical analysis method is considered to be simple and popular. In this study, the main aim is to evaluate the performance of Shannon entropy (SE) and weights of evidence (WOE) statistical models in landslide susceptibility mapping of Pithoragarh district of Uttarakhand state, India. For this purpose, ten landslide affecting factors, namely, slope degree, aspect, curvature, elevation, land cover, slope forming materials, geomorphology (landforms), distance to rivers, distance to roads, and overburden depth were used for the development of landslide susceptibility maps using the SE and WOE methods. Data extracted from the Google Earth images, Aster Digital Elevation Model, and Geological Survey of India report were used for the construction and evaluation of landslide susceptibility models and maps. The landslide data of 91 locations were randomly divided into two parts in the ratio of 70 : 30 using GIS software that is 70% data was used for training the models and 30% data was used for testing and validating the models. Performance of the applied models was evaluated using area under the AUC (area under the curve) ROC (receiver operating characteristics) curve. Results indicated that the WOE model is having better accuracy (AUCWOE = 68.75%) than the SE model (AUCSE = 52.17%) in the development of landslide susceptibility maps. Hence, WOE model can be used for the development of accurate landslide susceptibility maps which can provide useful information to decision maker and policy planner in better development of landslide prone areas.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3