Affiliation:
1. Faculty of Computer and Information Science, Southwest University, Chongqing 400715, China
Abstract
Association rules mining is an important technology in data mining. FP-Growth (frequent-pattern growth) algorithm is a classical algorithm in association rules mining. But the FP-Growth algorithm in mining needs two times to scan database, which reduces the efficiency of algorithm. Through the study of association rules mining and FP-Growth algorithm, we worked out improved algorithms of FP-Growth algorithm—Painting-Growth algorithm and N (not) Painting-Growth algorithm (removes the painting steps, and uses another way to achieve). We compared two kinds of improved algorithms with FP-Growth algorithm. Experimental results show that Painting-Growth algorithm is more than 1050 and N Painting-Growth algorithm is less than 10000 in data volume; the performance of the two kinds of improved algorithms is better than that of FP-Growth algorithm.
Funder
Fundamental Research Funds for the Central Universities
Subject
Computer Science Applications,Software
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献