Equalization Optimizer-Based LSTM Application in Reservoir Identification

Author:

Yang Fan1ORCID,Xia Kewen1ORCID,Fan Shurui1ORCID,Zhang Zhiwei1

Affiliation:

1. Hebei University of Technology, College of Electronic Information Engineering, Tianjin 300401, China

Abstract

In recent years, the use of long short-term memory (LSTM) has made significant contributions to various fields and the use of intelligent optimization algorithms combined with LSTM is also one of the best ways to improve model shortcomings and increase classification accuracy. Reservoir identification is a key and difficult point in the process of logging, so using LSTM to identify the reservoir is very important. To improve the logging reservoir identification accuracy of LSTM, an improved equalization optimizer algorithm (TAFEO) is proposed in this paper to optimize the number of neurons and various parameters of LSTM. The TAFEO algorithm mainly employs tent chaotic mapping to enhance the population diversity of the algorithm, convergence factor is introduced to better balance the local and global search, and then, a premature disturbance strategy is employed to overcome the shortcomings of local minima. The optimization performance of the TAFEO algorithm is tested with 16 benchmark test functions and Wilcoxon rank-sum test for optimization results. The improved algorithm is superior to many intelligent optimization algorithms in accuracy and convergence speed and has good robustness. The receiver operating characteristic (ROC) curve is used to evaluate the performance of the optimized LSTM model. Through the simulation and comparison of UCI datasets, the results show that the performance of the LSTM model based on TAFEO has been significantly improved, and the maximum area under the ROC curve value can get 99.43%. In practical logging applications, LSTM based on an equalization optimizer is effective in well-logging reservoir identification, the highest recognition accuracy can get 95.01%, and the accuracy of reservoir identification is better than other existing identification methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference26 articles.

1. A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction;S. Yu;Applied Mathematics and Computation,2008

2. Application of artificial neural networks for reservoir characterization with limited data;K. Aminian;Journal of Petroleum Science and Engineering,2005

3. A lithology identification method for continental shale oil reservoir based on BP neural network

4. Bi-LSTM deep neural network reservoir classification model based on the innovative input of logging curve response sequences;X. Zhou;IEEE Access,2021

5. Deep learning reservoir porosity prediction based on multilayer long short-term memory network

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3