Deep learning reservoir porosity prediction based on multilayer long short-term memory network

Author:

Chen Wei1ORCID,Yang Liuqing1ORCID,Zha Bei1,Zhang Mi2ORCID,Chen Yangkang3ORCID

Affiliation:

1. Yangtze University, Key Laboratory of Exploration Technology for Oil and Gas Resources of Ministry of Education, Daxue Road No.111, Caidian District, Wuhan 430100, China and Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Daxue Road No. 111, Caidian District, Wuhan 430100, China.(corresponding author); .

2. China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, Fuxue Road 18th, Beijing 102200, China..

3. Zhejiang University, School of Earth Sciences, Hangzhou 310027, China..

Abstract

The cost of obtaining a complete porosity value using traditional coring methods is relatively high, and as the drilling depth increases, the difficulty of obtaining the porosity value also increases. Nowadays, the prediction of fine reservoir parameters for oil and gas exploration is becoming more and more important. Therefore, high-efficiency and low-cost prediction of porosity based on logging data is necessary. We have developed a machine-learning method based on the traditional long short-term memory (LSTM) model, called multilayer LSTM (MLSTM), to perform the porosity prediction task. We used three different wells in a block in southern China for the prediction task, including a training well and two test wells. One test well has the same logging data type as the training well, whereas the other test well differs from the training well in the logging depth and parameter types. Two different types of test data sets are used to detect the generalization ability of the network. A set of data was used to train the MLSTM network, and the hyperparameters of the network were adjusted through experimental accuracy feedback. We also tested the performance of the network using two sets of log data from different regions, including generalization and sensitivity of the network. During the training phase of the porosity prediction model, the developed MLSTM establishes a minimized objective function, uses the Adam optimization algorithm to update the weight of the network, and adjusts the network hyperparameters to select the best target according to the feedback of the network accuracy. Compared with conventional sequence neural networks, such as the gated recurrent unit and recurrent neural network, the logging data experiments show that MLSTM has better robustness and accuracy in depth sequence prediction. Especially, the porosity value at the depth inflection point can be better predicted when the trend of the depth sequence was predicted. This framework is expected to reduce the porosity prediction errors when data are insufficient and log depths are different.

Funder

National Natural Science Foundation of China

Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3