FCM Clustering Approach Optimization Using Parallel High-Speed Intel FPGA Technology

Author:

Almomany Abedalmuhdi1ORCID,Jarrah Amin1ORCID,Al Assaf Anwar2

Affiliation:

1. Department of Computer Engineering, Yarmouk University, Irbid, Jordan

2. Aviation Sciences Dean/AMMAN Arab University, Amman, Jordan

Abstract

Fuzzy C-Means (FCM) is a widely used clustering algorithm that performs well in various scientific applications. Implementing FCM involves a massive number of computations, and many parallelization techniques based on GPUs and multicore systems have been suggested. In this study, we present a method for optimizing the FCM algorithm for high-speed field-programmable gate technology (FPGA) using a high-level C-like programming language called open computing language (OpenCL). The method was designed to enable the high-level compiler/synthesis tool to manipulate a task-parallelism model and create an efficient design. Our experimental results (based on several datasets) show that the proposed method makes the FCM execution time more than 186 times faster than the conventional design running on a single-core CPU platform. Also, its processing power reached 89 giga floating points operations per second (GFLOPs).

Funder

Intel FPGA University Program

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3