Silicon Nanoscale Materials: From Theoretical Simulations to Photonic Applications

Author:

Khriachtchev Leonid1,Ossicini Stefano2ORCID,Iacona Fabio3,Gourbilleau Fabrice4ORCID

Affiliation:

1. Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland

2. Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia, Via Amendola, 2 Pad. Morselli, 42122 Reggio nell'Emilia, Italy

3. MATIS IMM CNR, Via Santa Sofia 64, 95123 Catania, Italy

4. CIMAP, CNRS/CEA/ENSICAEN/UCBN, 6 boulevard Maréchal Juin, 14050 Caen Cedex 4, France

Abstract

The combination of photonics and silicon technology is a great challenge because of the potentiality of coupling electronics and optical functions on a single chip. Silicon nanocrystals are promising in various areas of photonics especially for light-emitting functionality and for photovoltaic cells. This review describes the recent achievements and remaining challenges of Si photonics with emphasis on the perspectives of Si nanoscale materials. Many of the results and properties can be simulated and understood based on theoretical studies. However, some of the key questions like the light-emitting mechanism are subjects of intense debates despite a remarkable progress in the recent years. Even more complex and important is to move the known experimental observations towards practical applications. The demonstrated devices and approaches are often too complex and/or have too low efficiency. However, the challenge to combine optical and electrical functions on a chip is very strong, and we expect more research activity in the field of Si nanophotonics in the future.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Reference144 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3