Potential Molecular Mechanism of the NPPB Gene in Postischemic Heart Failure with and without T2DM

Author:

Guan Yao-Zong1,Yin Rui-Xing123ORCID,Deng Guo-Xiong1,Zheng Peng-Fei1,Liu Chun-Xiao1,Wei Bi-Liu1

Affiliation:

1. Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021 Guangxi, China

2. Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning, 530021 Guangxi, China

3. Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021 Guangxi, China

Abstract

Background. This study is aimed at investigating natriuretic peptide B (NPPB) coexpression genes and their pathways involved in heart failure (HF) among patients both with and without type 2 diabetes mellitus (T2DM). Methods. The microarray dataset GSE26887, containing 19 postischemic HF patients’ peripheral blood samples (7 with T2DM and 12 without T2DM), was examined to detect the genes coexpressed with NPPB using the corr.test function in the R packet. Furthermore, using online analytical tools, we determined the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Gene Ontology (GO) annotation, and protein-protein interaction (PPI) network of the coexpression genes. The modules and hub genes of the PPI network were then identified using the Cytoscape software. Results. In patients with T2DM, a total of 41 biological processes (BP), 20 cellular components (CC), 13 molecular functions (MF), and 41 pathways were identified. Furthermore, a total of 61 BPs, 16 CCs, 13 MFs, and 22 pathways in patients without T2DM were identified. In both groups of patients, 17 BPs, 10 CCs, 6 MFs, and 13 pathways were enriched. We also identified 173 intersectional coexpression genes (63 positively, 106 negatively, and 4 differently coexpressed in patients with and without T2DM, respectively) in both types of patients, which were enriched in 16 BPs, 8 CCs, 3 MFs, and 8 KEGG pathways. Moreover, the PPI network (containing 237 edges and 170 nodes) with the top module significantly enriched in 4 BPs (tricarboxylic acid metabolic process, citrate metabolic process, tricarboxylic acid cycle, and aerobic respiration) and 3 pathways (citrate cycle, malaria parasite metabolic pathway, and AGE-RAGE signaling pathway in diabetic complications) was constructed. DECR1, BGN, TIMP1, VCAN, and CTCF are the top hub genes. Conclusions. Our findings may elucidate the functions and roles of the NPPB gene in patients with postischemic HF and facilitate HF management.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3