Identification of the Potential Molecular Mechanism of TGFBI Gene in Persistent Atrial Fibrillation

Author:

Guan Yao-Zong12ORCID,Liu Hao1ORCID,Huang Huan-Jie1,Liang Dong-Yan12,Wu Si-Ying1,Zhang Tang1

Affiliation:

1. Department of Cardiology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007 Guangxi, China

2. Cardiac Rehabilitation Center, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007 Guangxi, China

Abstract

Background. Transforming growth factor beta-induced protein (TGFBI, encoded by TGFBI gene), is an extracellular matrix protein, widely expressed in variety of tissues. It binds to collagens type I, II, and IV and plays important roles in the interactions of cell with cell, collagen, and matrix. It has been reported to be associated with myocardial fibrosis, and the latter is an important pathophysiologyical basis of atrial fibrillation (AF). However, the mechanism of TGFBI in AF remains unclear. We aimed to detect the potential mechanism of TGFBI in AF via bioinformatics analysis. Methods. The microarray dataset of GSE115574 was examined to detect the genes coexpressed with TGFBI from 14 left atrial tissue samples of AF patients. TGFBI coexpression genes were then screened using the R package. Using online analytical tools, we determined the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Gene Ontology (GO) annotation, and protein-protein interaction (PPI) network of TGFBI and its coexpression genes. The modules and hub genes of the PPI-network were then identified. Another dataset, GSE79768 was examined to verify the hub genes. DrugBank was used to detect the potential target drugs. Results. In GSE115574 dataset, a total of 1818 coexpression genes (769 positive and 1049 negative) were identified, enriched in 120 biological processes (BP), 38 cellular components (CC), 36 molecular functions (MF), and 39 KEGG pathways. A PPI-network with average 12.2-degree nodes was constructed. The genes clustered in the top module constructed from this network mainly play a role in PI3K-Akt signaling pathway, viral myocarditis, inflammatory bowel disease, and platelet activation. CXCL12, C3, FN1, COL1A2, ACTB, VCAM1, and MMP2 were identified and finally verified as the hub genes, mainly enriched in pathways like leukocyte transendothelial migration, PI3K-Akt signaling pathway, viral myocarditis, rheumatoid arthritis, and platelet activation. Pegcetacoplan, ocriplasmin, and carvedilol were the potential target drugs. Conclusions. We used microdataset to identify the potential functions and mechanisms of the TGFBI and its coexpression genes in AF patients. Our findings suggest that CXCL12, C3, FN1, COL1A2, ACTB, VCAM1, and MMP2 may be the hub genes.

Funder

Natural Science Foundation of Guangxi Zhuang Autonomous Region

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3