Nanoscale Structures and Hydrogen Storage Capacity of Fe-C-H Produced by Milling Graphite with Steel Balls in a Hydrogen Atmosphere

Author:

Wakayama Hiroaki1ORCID

Affiliation:

1. Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan

Abstract

To elucidate the influence of Fe on the interaction between carbon and hydrogen in graphite nanocrystals, graphite nanocrystals were mechanically milled with steel balls in a hydrogen atmosphere, and the potential of the material produced to store hydrogen was evaluated. X-ray diffraction and Raman spectra revealed that milling reduced the graphene size and increased the average distance between graphene layers. Elemental analysis showed that milling increased both the H/C and Fe/C ratios in the material. After being milled in a hydrogen atmosphere, samples released hydrogen at a lower temperature than before milling. Thermal decomposition occurred in two stages—235 to 475°C and 692 to 749°C—and yielded a total of 1.0 wt% hydrogen. It is hypothesized that these two stages corresponded to hydrogen released from Fe3C structures and from the Fe-catalyzed graphitization reaction, respectively. Before milling, samples slowly released a total of 0.5 wt% hydrogen over a temperature range from about 300 to over 900°C. Fe-C-H materials are attractive for hydrogen storage because they are composed of carbon and iron, which are inexpensive and abundant elements on Earth, and they have a high hydrogen weight density of 11 wt%.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3