Development of Protective Clothing against Nanoparticle Based on Electrospun Nanofibers

Author:

Faccini M.1,Vaquero C.2,Amantia D.1

Affiliation:

1. Nanomaterials Division, LEITAT Technological Center, C/ de la Innovació 2, 08225 Terrassa, Spain

2. Industry and Transport Division, Tecnalia, P.T. Álava C/ Leonardo Da Vinci 11, Álava 01510 Miñano, Spain

Abstract

In this paper, the development of efficient protective clothing against nanoparticulate aerosols is presented. Nanofibrous mats of polyamide 6 (PA6) were deposited onto a nonwoven viscose substrate by electrospinning technique. The influence of electrospinning parameters, including solution concentration, viscosity, and conductivity, was studied for the production of nonwovens with controlled fiber diameter showing a size distribution ranging from 66 to 195 nm. By varying several process parameters, textiles with different thickness of the nanofiber layer and thus air permeability were obtained. A hot-press lamination process using a thermoplastic resin as glue was applied to improve the adhesion of the nanofiber layer onto the textile support. After 1500 cycles of repeated compression and torsion, the nanofiber layer was still firmly attached to the support, while mechanical damage is visible in some areas. The penetration of NaCl particles with diameter ranging from 15 to 300 nm through the electrospun textiles was found to be strongly dependent on nanofiber layer thickness. A really thin nanofiber coating provides up to 80% retention of 20 nm size particles and over 50% retention of 200 nm size nanoparticles. Increasing the thickness of the nanofiber mat, the filtration efficiency was increased to over 99% along the whole nanoparticle range. The results obtained highlight the potential of nanofibers in the development of efficient personal protective equipments against nanoparticles.

Funder

Ministerio de Ciencia e Innovación

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3