Targeted Advertising in Social Media Platforms Using Hybrid Convolutional Learning Method besides Efficient Feature Weights

Author:

Ebadi Jokandan Seyed Mohsen1ORCID,Bayat Peyman1ORCID,Farrokhbakht Foumani Mehdi2ORCID

Affiliation:

1. Department of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran

2. Department of Computer Engineering, Fouman and Shaft Branch, Islamic Azad University, Fouman, Iran

Abstract

Advertising has been one of the most effective and valuable marketing tools for many years. Utilizing social media networks to market and sell products is becoming increasingly prevalent. The greatest challenges in this industry are the high cost of providing content and posting it on social networks, maximizing ad efficiency, and limiting spam advertisements. User engagement rate is one of the most frequently employed metrics for measuring the effectiveness of social media advertisements. Previous research has not comprehensively analyzed the factors influencing engagement rate. To this end, it is necessary to investigate the impact of various factors (such as user characteristics, posts, emotions, relationships, images, and backgrounds, among others) on engagement rate because assessing these influential factors in different networks can increase the engagement of users with advertising posts and thereby increase the success rate of targeted advertising. To predict the user engagement rate, we extract the significant attributes of posts and introduce an adaptive hybrid convolutional model based on FW-CNN-LSTM. We cluster the selected data based on the weight and significance of their attributes using the FCM and XGBoost algorithms and then apply CNN- and LSTM-based methods to select similar features. Using accuracy, recall, F-measure, and precision metrics, we compared our algorithm to standard techniques such as SVM, Logistic regression, Naïve Bayes, and CNN. According to the findings, hashtag, brand ID, movie title, and actors achieve the highest scores, and the values for actual training time in various data ratios are relatively linear, which confirms the scalability of the proposed model for large datasets. The results also demonstrate that our proposed method outperforms others and can lead to targeted ads on social media.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3