Author:
Purba Kristo Radion,Asirvatham David,Murugesan Raja Kumar
Abstract
On Instagram, the number of followers is a common success indicator. Hence, followers selling services become a huge part of the market. Influencers become bombarded with fake followers and this causes a business owner to pay more than they should for a brand endorsement. Identifying fake followers becomes important to determine the authenticity of an influencer. This research aims to identify fake users' behavior, and proposes supervised machine learning models to classify authentic and fake users. The dataset contains fake users bought from various sources, and authentic users. There are 17 features used, based on these sources: 6 metadata, 3 media info, 2 engagement, 2 media tags, 4 media similarity. Five machine learning algorithms will be tested. Three different approaches of classification are proposed, i.e. classification to 2-classes and 4-classes, and classification with metadata. Random forest algorithm produces the highest accuracy for the 2-classes (authentic, fake) and 4-classes (authentic, active fake user, inactive fake user, spammer) classification, with accuracy up to 91.76%. The result also shows that the five metadata variables, i.e. number of posts, followers, biography length, following, and link availability are the biggest predictors for the users class. Additionally, descriptive statistics results reveal noticeable differences between fake and authentic users.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献