Sensitivity Analysis of Effective Parameters in Borehole Failure, Using Neural Network

Author:

Jolfaei Somaie1,Lakirouhani Ali1ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan, Iran

Abstract

After drilling a borehole in the ground and in a rocky environment, the materials around the borehole are crushed and separated in layers from the borehole wall; this causes the borehole cross section to lose its original circular shape, which redistributes stresses and further failure. This type of episodic failure, which occurs symmetrically and V-shaped on both sides of the borehole and along the minor principal stress, is called breakout. The dimensions of breakout, i.e., its depth and width, are two important indicators that have recently been used in estimating in situ stresses; however, the dimensions of the breakout area depend on the in situ stresses and mechanical properties of the rock, which have not been well addressed so far. This paper presents a comprehensive investigation of breakout dimensions using finite element numerical analysis. The proposed numerical model is based on the equations governing the two-dimensional breakout phenomenon under nonisotropic in situ stresses and plane strain condition. According to the results, increasing the failure function of the area around the breakout tip causes the breakout to expand, until the failure function is less than 1 for all points around the breakout tip, at which point the breakout expansion is stopped and breakout reaches stability. In the other part of the article, using 121 datasets obtained from numerical analysis, an artificial neural network is trained to predict breakout dimensions based on the input parameters of the problem. The main finding of this section is a model that shows that among the parameters affecting the borehole breakout, the internal friction angle of the rock has the greatest impact on the dimensions of the breakout.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3