Immune Escape Mechanisms and Future Prospects for Immunotherapy in Neuroblastoma

Author:

Vanichapol Thitinee1ORCID,Chutipongtanate Somchai23,Anurathapan Usanarat1,Hongeng Suradej1

Affiliation:

1. Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok 10400, Thailand

2. Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok 10400, Thailand

3. Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA

Abstract

Neuroblastoma (NB) is the most common extracranial solid tumor in childhood with 5-year survival rate of 40% in high-risk patients despite intensive therapies. Recently, adoptive cell therapy, particularly chimeric antigen receptor (CAR) T cell therapy, represents a revolutionary treatment for hematological malignancies. However, there are challenges for this therapeutic strategy with solid tumors, as a result of the immunosuppressive nature of the tumor microenvironment (TME). Cancer cells have evolved multiple mechanisms to escape immune recognition or to modulate immune cell function. Several subtypes of immune cells that infiltrate tumors can foster tumor development, harbor immunosuppressive activity, and decrease an efficacy of adoptive cell therapies. Therefore, an understanding of the dual role of the immune system under the influences of the TME has been crucial for the development of effective therapeutic strategies against solid cancers. This review aims to depict key immune players and cellular pathways involved in the dynamic interplay between the TME and the immune system and also to address challenges and prospective development of adoptive T cell transfer for neuroblastoma.

Funder

National Science and Technology Development Agency

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3