Research on Artificial Intelligence Classification and Statistical Methods of Financial Data in Smart Cities

Author:

Fu Xuezhong1ORCID

Affiliation:

1. School of Economics, Hainan University, Haikou 570228, China

Abstract

In order to improve the effect of financial data classification and extract effective information from financial data, this paper improves the data mining algorithm, uses linear combination of principal components to represent missing variables, and performs dimensionality reduction processing on multidimensional data. In order to achieve the standardization of sample data, this paper standardizes the data and combines statistical methods to build an intelligent financial data processing model. In addition, starting from the actual situation, this paper proposes the artificial intelligence classification and statistical methods of financial data in smart cities and designs data simulation experiments to conduct experimental analysis on the methods proposed in this paper. From the experimental results, the artificial intelligence classification and statistical method of financial data in smart cities proposed in this paper can play an important role in the statistical analysis of financial data.

Funder

Hainan University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear Predictive Coding vs. Kalman Filter for Urban Finance Prediction in Smart Cities with S &P/BMV IPC;Communications in Computer and Information Science;2024

2. Research and Application of Grey Principal Component Analysis in Big Data Analytics;2023 4th International Conference on Computer Engineering and Application (ICCEA);2023-04-07

3. A Deep Machine Learning-Based Assistive Decision System for Intelligent Load Allocation under Unknown Credit Status;Computational Intelligence and Neuroscience;2022-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3