A Deep Machine Learning-Based Assistive Decision System for Intelligent Load Allocation under Unknown Credit Status

Author:

Yan Wenjing1ORCID,Wang Hong1ORCID,Zuo Min1ORCID,Li Haipeng2ORCID,Zhang Qingchuan1ORCID,Lu Qiang1,Zhao Chuan1ORCID,Wang Shuo3

Affiliation:

1. National Engineering Research Centre for Agri-product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China

2. Capinfo Company Ltd., Beijing 100010, China

3. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Nowadays, the banks are facing increasing business pressure in loan allocations, because more and more enterprises are applying for it and financial risk is becoming vaguer. To this end, it is expected to investigate effective autonomous loan allocation decision schemes that can provide guidance for banks. However, in many real-world scenarios, the credit status information of enterprises is unknown and needs to be inferred from business status. To handle such an issue, this paper proposes a two-stage loan allocation decision framework for enterprises with unknown credit status. And the proposal is named as TLAD-UC for short. For the first stage, the idea of deep machine learning is introduced to train a prediction model that can generate credit status prediction results for enterprises with unknown credit status. For the second stage, a dynamic planning model with both optimization objective and constraint conditions is established. Through such model, both the profit and risk of banks can be well described. Solving such a dynamic planning model via computer simulation programs, the optimal allocation schemes can be suggested.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3