Improving the Neural Segmentation of Blurry Serial SEM Images by Blind Deblurring

Author:

Cheng Ao12ORCID,Kang Kai3ORCID,Zhu Zhanpeng4ORCID,Zhang Ruobing25ORCID,Wang Lirong1ORCID

Affiliation:

1. School of Electronic and Information Engineering, Soochow University, Suzhou 215009, China

2. Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China

3. Etiometry, Inc, 280 Summer St Fl 4, Boston, MA 02210, USA

4. Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China

5. Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China

Abstract

Serial scanning electron microscopy (sSEM) has recently been developed to reconstruct complex largescale neural connectomes, through learning-based instance segmentation. However, blurry images are inevitable amid prolonged automated data acquisition due to imprecision in autofocusing and autostigmation, which impose a great challenge to accurate segmentation of the massive sSEM image data. Recently, learning-based methods, such as adversarial learning and supervised learning, have been proven to be effective for blind EM image deblurring. However, in practice, these methods suffer from the limited training dataset and the underrepresentation of high-resolution decoded features. Here, we propose a semisupervised learning guided progressive decoding network (SGPN) to exploit unlabeled blurry images for training and progressively enrich high-resolution feature representation. The proposed method outperforms the latest deblurring models on real SEM images with much less ground truth input. The improvement of the PSNR and SSIM is 1.04 dB and 0.086, respectively. We then trained segmentation models with deblurred datasets and demonstrated significant improvement in segmentation accuracy. The A-rand decreased by 0.119 and 0.026, respectively, for 2D and 3D segmentation.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3