Energy Evolution Characteristics and Performance Parameter Degradation of Rubber-Mixed Concrete in Sulfate Attack Environment

Author:

Chen Xiu-ling1ORCID

Affiliation:

1. School of Architectural Engineering, Ma'anshan University, Ma'anshan 243000, China

Abstract

In order to study the sulfate resistance of rubber concrete (RC), the compressive strength test of RC with different contents (0%, 5%, 10%, and 15%) was carried out, and the proportion of RC with standard curing for 28 days was optimized. Sulfate attack test was carried out on the selected RC and compared with normal concrete (NC). The degradation degree was measured from the effective porosity, relative dynamic elastic modulus, SO42− concentration, and SEM microstructure observation after different attack times. The energy analysis method is used to study the evolution law of total strain energy, elastic strain energy, and dissipated strain energy of NC and RC in the process of deformation and failure after different attack times, and the influence of sulfate attack on concrete is explored from the perspective of energy. The results show that with the progress of sulfate attack, the effective porosity of NC and RC both decreases first and then increases, and the relative dynamic elastic modulus increases first and then decreases. Rubber is beneficial to improve the sulfate resistance of concrete, delay the attack of SO42− on concrete, and improve the ductile deformation of concrete. This study can provide a theoretical reference for the application of RC in practical engineering.

Funder

University Natural Science Research Project of Anhui Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3