Enhancement of the Concrete Durability with Hybrid Nano Materials

Author:

Gamal Heba A.,El-Feky M. S.,Alharbi Yousef R.,Abadel Aref A.,Kohail MohamedORCID

Abstract

The importance of the incorporation of nanomaterials in concrete has emerged as a promising research interest due to the outstanding functionalized properties of the materials at that size level. This study aims to investigate the engineering and durability properties of concrete incorporated with hybrid nanomaterials. In this study, the influence of carbon nanotube (CNT) on microstructure, mechanical, and corrosion characteristics of nano-clay-based (NC) concrete has been evaluated. The cement was replaced with CNT at different percentages of 0.01%, 0.02%, and 0.04% by weight, while NC was replaced at a constant percentage of 5%. A scanning electron microscope (SEM) was used to examine the microstructural characterization of the samples. To investigate the influence of carbon nanotubes in the fresh properties, slump and air content tests were carried out. The compressive strength, tensile strength, flexural strength, and bond strength of the hardened concrete was evaluated according to ASTM standards. The porosity of specimens was determined by carrying out the sorptivity and water penetration tests. The corrosion resistance of the steel bar embedded in concrete was assessed. The results of SEM examinations showed that incorporating CNT into the nano-clay-based concrete remarkably achieved a denser structure at all studied contents. Further, significant enhancements in the mechanical properties, durability, and chloride penetration resistance were attained when incorporating CNT in the NC concrete. Further, adding CNTs improves the corrosion resistance and has proven useful resistance to crack propagation within the concrete matrix as compared to the control mix without CNT. Results of this study prove that the incorporation of hybrid nano CNT and NC gives better performance for mechanical strength and durability properties.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference61 articles.

1. Engineering properties of alkali activated materials reactive powder concrete

2. Mechanical properties of EAFS concrete after subjected to elevated temperature

3. Characterization of alkali-activated hybrid slag/cement concrete

4. Effect of Nano Silica De-agglomeration, and Methods of Adding Super-plasticizer on the Compressive Strength, and Workability of Nano Silica Concrete;Elkady;Civ. Environ. Res.,2013

5. Improving The Reactivity Of Clay Nano-Partciles In High Strength Mortars Through Indirect Sonication Method;El-tair;Int. J. Sci. Technol. Res.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3