Characteristics and Mechanism Analysis of Aerodynamic Noise Sources for High-Speed Train in Tunnel

Author:

Tan Xiao-Ming1,Liu Hui-fang1,Yang Zhi-Gang1ORCID,Zhang Jie1,Wang Zhong-gang1,Wu Yu-wei1

Affiliation:

1. Key Laboratory of Traffic Safety on Track, Ministry of Education, Central South University, Changsha, Hunan Province 410075, China

Abstract

We aim to study the characteristics and mechanism of the aerodynamic noise sources for a high-speed train in a tunnel at the speeds of 50 m/s, 70 m/s, 83 m/s, and 97 m/s by means of the numerical wind tunnel model and the nonreflective boundary condition. First, the large eddy simulation model was used to simulate the fluctuating flow field around a 1/8 scale model of a high-speed train that consists of three connected vehicles with bogies in the tunnel. Next, the spectral characteristics of the aerodynamic noise source for the high-speed train were obtained by performing a Fourier transform on the fluctuating pressure. Finally, the mechanism of the aerodynamic noise was studied using the sound theory of cavity flow and the flow field structure. The results show that the spectrum pattern of the sound source energy presented broadband and multipeak characteristics for the high-speed train. The dominant distribution frequency range is from 100 Hz to 4 kHz for the high-speed train, accounting for approximately 95.1% of the total sound source energy. The peak frequencies are 400 Hz and 800 Hz. The sound source energy at 400 Hz and 800 Hz is primarily from the bogie cavities. The spectrum pattern of the sound source energy has frequency similarity for the bottom structure of the streamlined part of the head vehicle. The induced mode of the sound source energy is probably the dynamic oscillation mode of the cavity and the resonant oscillation mode of the cavity for the under-car structure at 400 Hz and 800 Hz, respectively. The numerical computation model was checked by the wind tunnel test results.

Funder

Ministry of Education, School of Traffic & Transportation Engineering

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3