Recognition of 3D Shapes Based on 3V-DepthPano CNN

Author:

Yin Junjie1,Huang Ningning2,Tang Jing1,Fang Meie1ORCID

Affiliation:

1. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China

2. School of Computer, Hangzhou Dianzi University, Hangzhou, China

Abstract

This paper proposes a convolutional neural network (CNN) with three branches based on the three-view drawing principle and depth panorama for 3D shape recognition. The three-view drawing principle provides three key views of a 3D shape. A depth panorama contains the complete 2.5D information of each view. 3V-DepthPano CNN is a CNN system with three branches designed for depth panoramas generated from the three key views. This recognition system, i.e., 3V-DepthPano CNN, applies a three-branch convolutional neural network to aggregate the 3D shape depth panorama information into a more compact 3D shape descriptor to implement the classification of 3D shapes. Furthermore, we adopt a fine-tuning technique on 3V-DepthPano CNN and extract shape features to facilitate the retrieval of 3D shapes. The proposed method implements a good tradeoff state between higher accuracy and training time. Experiments show that the proposed 3V-DepthPano CNN with 3 views obtains approximate accuracy to MVCNN with 12/80 views. But the 3V-DepthPano CNN frame takes much shorter time to obtain depth panoramas and train the network than MVCNN. It is superior to all other existing advanced methods for both classification and shape retrieval.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3