New Community Estimation Method in Bipartite Networks Based on Quality of Filtering Coefficient

Author:

Xiong Li1,Wang Guo-Zheng1,Liu Hu-Chen2ORCID

Affiliation:

1. School of Management, Shanghai University, Shanghai 200444, China

2. College of Economics and Management, China Jiliang University, Hangzhou, Zhejiang 310018, China

Abstract

Community detection is an important task in network analysis, in which we aim to find a network partitioning that groups together vertices with similar community-level connectivity patterns. Bipartite networks are a common type of network in which there are two types of vertices, and only vertices of different types can be connected. While there are a range of powerful and flexible methods for dividing a bipartite network into a specified number of communities, it is an open question how to determine exactly how many communities one should use, and estimating the numbers of pure-type communities in a bipartite network has not been completed. In our paper, we propose a method named as “biCNEQ” (bipartite network communities number estimation based on quality of filtering coefficient), which ensures that communities are all pure type, for estimating the number of communities in a bipartite network. This paper makes the following contributions: (1) we show how a unipartite weighted network, which we call similarity network, can be projected from a bipartite network using a measure of correlation; (2) we reveal the relation between the similarity correlation and community’s edges in the vertices of a unipartite network; (3) we design a measure of the filtering quality named QFC (quality of filtering coefficient) to filter the similarity network and construct a binary network, which we call approximation network; and (4) the number of communities in each type of unipartite networks is estimated using Riolo’s method with the approximation network as input. Finally, the proposed biCNEQ is demonstrated by both synthetic bipartite networks and a real-world network, and the results show that it can determine the correct number of communities and perform better than two classical one-mode projection methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3