An Effective Approach for Modular Community Detection in Bipartite Network Based on Integrating Rider with Harris Hawks Optimization Algorithms

Author:

Fahad Alkhamees Bader1ORCID,Mosleh Mogeeb A. A.2ORCID,AlSalman Hussain3ORCID,Azeem Akbar Muhammad4

Affiliation:

1. Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

2. Faculty of Engineering and Information Technology, Taiz University, Taiz 6803, Yemen

3. Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

4. Lappeenranta-Lahti University of Technology (LUT), Department of Software Engineering, Lappeenranta 53851, Finland

Abstract

The strenuous mining and arduous discovery of the concealed community structure in complex networks has received tremendous attention by the research community and is a trending domain in the multifaceted network as it not only reveals details about the hierarchical structure of multifaceted network but also assists in better understanding of the core functions of the network and subsequently information recommendation. The bipartite networks belong to the multifaceted network whose nodes can be divided into a dissimilar node-set so that no edges assist between the vertices. Even though the discovery of communities in one-mode network is briefly studied, community detection in bipartite networks is not studied. In this paper, we propose a novel Rider-Harris Hawks Optimization (RHHO) algorithm for community detection in a bipartite network through node similarity. The proposed RHHO is developed by the integration of the Rider Optimization (RO) algorithm with the Harris Hawks Optimization (HHO) algorithm. Moreover, a new evaluation metric, i.e., h-Tversky Index (h-TI), is also proposed for computing node similarity and fitness is newly devised considering modularity. The goal of modularity is to quantify the goodness of a specific division of network to evaluate the accuracy of the proposed community detection. The quantitative assessment of the proposed approach, as well as thorough comparative evaluation, was meticulously conducted in terms of fitness and modularity over the citation networks datasets (cit-HepPh and cit-HepTh) and bipartite network datasets (Movie Lens 100 K and American Revolution datasets). The performance was analyzed for 250 iterations of the simulation experiments. Experimental results have shown that the proposed method demonstrated a maximal fitness of 0.74353 and maximal modularity of 0.77433, outperforming the state-of-the-art approaches, including h-index-based link prediction, such as Multiagent Genetic Algorithm (MAGA), Genetic Algorithm (GA), Memetic Algorithm for Community Detection in Bipartite Networks (MATMCD-BN), and HHO.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3