Multistage Multiobjective Optimization for Optimal Energy Management of the Connected Cophase Traction Power System

Author:

Akbari Saeed1ORCID,Fazel Seyed Saeed1ORCID

Affiliation:

1. School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

This study presents a multiobjective energy management model for the connected cophase traction power system (CCTPS). Each traction substation (TSS) includes a power flow controller (PFC), energy storage systems (ESS), wind turbine, and PV modules beside a single-phase traction power transformer. Also, in order to exchange the power between the adjacent TSSs, power transfer controllers (PTCs) are used. The proposed energy management model is formulated as a multistage multiobjective optimization problem with a lexicography approach. In the first stage, the cost of purchased energy is minimized. In the second stage, the independence of the CCTPS from the external grid improved. Finally, minimizing the voltage unbalanced ratio (VUR) of CCTPS is considered as the third stage goal. According to the simulation results, utilizing GAMS optimization software, the proposed model will decrease remarkably VUR and dependency of CCTPS without any increase in operation cost.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3