Garment Design Models Combining Bayesian Classifier and Decision Tree Algorithm

Author:

Yan Xiaoyu12ORCID,Ma Shuo1ORCID

Affiliation:

1. College of Fine Arts and Design, Hebei Institute of Communications, ShiJiazhuang 050000, China

2. Faculty of Art & Design, Universiti Teknologi, Mara 40450, Shah Alam, Malaysia

Abstract

With the rapid economic development and rising consumption levels in recent years, people are becoming more and more demanding in terms of style and fashion of clothes. As a result, customer demand for personalised clothing is increasing and the need to respond quickly to consumer demands is also becoming a competitive issue for clothing companies. The automation and intelligence of the garment design and production process is an important part of the implementation of intelligent manufacturing in the garment industry and a necessary way to transform and upgrade the garment industry. Successful clothing styles always have a distinct style identity. The style of the garment can not only conveys the designer's vision but also express the emotional needs of the consumer. In contrast, traditional garment design involves only designers and a single style. With so many styles available, the user has only been able to combine them repeatedly and has not been able to create an innovative design. In addition, apparel design and product development is still a highly empirical task. To be specific, most apparel companies can only respond to a rapidly changing market by increasing the number of designers. However, this blind expansion of staff inevitably leads to increased production costs. As a result, how to effectively develop garment products without relying on the empirical knowledge of garment designers is one of the important issues in achieving intelligent manufacturing in garment enterprises. With the rapid development of computer and network technologies, artificial intelligence, machine learning, and expert systems are widely used in various industries. Nevertheless, the application of these advanced technologies in the field of garment design is still not deep enough. This is mainly due to the uncertainty and imprecision of garment design knowledge. Also, with the rapid development of the fashion industry and the arrival of the trend of personalisation, people's demand for clothing has gradually shifted from mass appeal in terms of comfort and aesthetics to personalisation in terms of self-polishing and temperament. The personalisation of clothing encompasses a wide range of preferences in terms of style and fit. The bottom-up design process and the relatively independent setup of functional modules in traditional clothing technology have prevented the different design levels from being interlinked. This does not reflect the composition of the garment elements in the process of forming features and makes it difficult to grasp the overall design state of the garment. Therefore, in order to address these above issues, this paper proposes a garment design model based on the Bayesian classifier and decision tree algorithm to investigate how computer technologies can be applied to model garment design knowledge. This model can enable inexperienced designers to develop garment products quickly and efficiently to meet the customisation needs of customers, thus enhancing the market competitiveness of garment enterprises.

Funder

Hebei Institute of Communications

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3