Development of a Data-Driven Predictive Model of Clothing Thermal Insulation Estimation by Using Advanced Computational Approaches

Author:

Lee ,Choi ,Choi ,Kim

Abstract

Clothing condition was selected as a key human-subject-relevant parameter which is dynamically changed depending on the user’s preferences and also on climate conditions. While the environmental components are relatively easier to measure using sensor devices, clothing value (clo) is almost impossible to visually estimate because it varies across building occupants even though they share constant thermal conditions in the same room. Therefore, in this study we developed a data-driven model to estimate the clothing insulation value as a function of skin and clothing surface temperatures. We adopted a series of environmental chamber tests with 20 participants. A portion of the collected data was used as a training dataset to establish a data-driven model based on the use of advanced computational algorithms. To consider a practical application, in this study we minimized the number of sensing points for data collection while adopting a wearable device for the user’s convenience. The study results revealed that the developed predictive model generated an accuracy of 88.04%, and the accuracy became higher in the prediction of a high clo value than in that of a low value. In addition, the accuracy was affected by the user’s body mass index. Therefore, this research confirms that it is possible to develop a data-driven predictive model of a user’s clo value based on the use of his/her physiological and ambient environmental information, and an additional study with a larger dataset via using chamber experiments with additional test participants is required for better performance in terms of prediction accuracy.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference47 articles.

1. 2009 ASHRAE Handbook: Fundamentals,2009

2. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)

3. Calculation of thermal comfort, Introduction of a basic comfort equation;Fanger;ASHRAE Trans.,1967

4. Thermal Environmental Conditions for Human Occupancy;Standard,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3