Affiliation:
1. School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
Abstract
An air suspension platform uses air pressure to realize the suspension function during the suspension process, and it has the disadvantage of large air pressure and a small suspension force. In this study, an air suspension platform was built using bionic design to reduce the required air pressure and increase the suspension force. A suspension structure mapping model was established according to the physiological structure characteristics of albatross wings. A bionic model was established by using the theoretical calculation formula and structural size parameters of the structural design. A 3D printer was used to manufacture the physical prototype of the suspended workpiece. Based on this, a suspension test rig was built. Six sets of contrast experiments were designed. The experimental results of the suspension test bench were compared with the theoretical calculation results. The results show that the buoyancy of the suspended workpiece with a V-shaped surface at a 15-degree attack angle was optimal for the same air pressure as the other workpieces. The surface structure of the suspended workpiece was applied to the air static pressure guide rail. By comparing the experimental data, the air pressure of the original air suspension guide rail was reduced by 37%, and the validity of the theory and design method was verified.
Funder
Jilin Province Education Department Project
Subject
Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献