An Adaptive Controller Design for Nonlinear Active Air Suspension Systems with Uncertainties

Author:

Zhang Jinhua1,Yang Yi1,Hu Cheng1

Affiliation:

1. School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China

Abstract

Active air spring suspensions can improve the vehicle ride comfort and meanwhile realize the vehicle height regulation, and therefore, they have been widely used and studied. However, to achieve better ride comfort and a satisfactory vehicle body height adjustment, the active air suspension controller becomes an indispensable and significant part of the system. Since the nonlinear suspension system possesses uncertainties, it is difficult to take into account both ride comfort and height regulation. This study innovatively proposes an adaptive control algorithm to specifically address the problem of vehicle height regulation and ride comfort for nonlinear active air suspension systems with uncertainties. The accurate tracking to reference vehicle body height curves is realized, and the ride comfort is also improved. Through simulations with two scenarios, it is illustrated that the active air suspension controller owns better control effectiveness than the PID controller. Compared with the PID controller, the designed controller can track the reference vehicle body height curves faster and more accurately. The result also verifies the priority of the designed controller.

Funder

Guangzhou Science and Technology Plan Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3