A Computer Model for the Simulation of Nonspherical Particle Dynamics in the Human Respiratory Tract

Author:

Sturm Robert1

Affiliation:

1. Brunnleitenweg 41, A-5061 Elsbethen, Salzburg, Austria

Abstract

In the study presented here deposition of spheres and nonspherical particles with various aspect ratios (0.01–100) in the human respiratory tract was theoretically modeled. Shape of the nonspherical particles was considered by the application of the latest aerodynamic diameter concepts. Particle deposition was predicted by using a stochastic model of the lung geometry and simulating particle transport trajectories according to the random-walk algorithm. Concerning fibers total deposition is significantly enhanced with respect to that of spheres for μm-sized particles, whereby at normal breathing conditions peripheral lung compartments serve as primary deposition targets. In the case of oblate disks, total deposition becomes mostly remarkable for submicron particles, with the bronchioli and alveoli being targeted to a high extent. Enhancement of the aerodynamic diameter and/or flow rate generally causes a displacement of deposition maxima from peripheral to more proximal lung regions. From these findings, it can be concluded that these particle classes may represent tremendous occupational hazards, especially if they are attached with radioactive elements or heavy metals.

Publisher

Hindawi Limited

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3