A Model for Translation and Rotation Resistance Tensors for Superellipsoidal Particles in Stokes Flow

Author:

Štrakl MitjaORCID,Hriberšek Matjaž,Wedel Jana,Steinmann Paul,Ravnik JureORCID

Abstract

In this paper, forces and torques on solid, non-spherical, orthotropic particles in Stokes flow are investigated by using a numerical approach on the basis of the Boundary Element Method. Different flow patterns around a particle are considered, taking into account the contributions of uniform, rotational and shear flows, to the force and the torque exerted on the particle. The expressions for the force and the toque are proposed, by introducing translation, rotation and deformation resistance tensors, which capture each of the flow patterns individually. A parametric study is conducted, considering a wide range of non-spherical particles, determined by the parametric superellipsoid surface equation. Using the results of the parametric study, an approximation scheme is derived on the basis of a multivariate polynomial expression. A coefficient matrix for the polynomial model is introduced, which is used as a tunable parameter for a minimization problem, whereby the polynomials are fitted to the data. The developed model is then put to the test by considering a few examples of particles with different shapes, while also being compared to other, currently available solutions. On top of that, the full functionality of the model is demonstrated by considering an example of a pollen grain, as a realistic non-spherical particle. First, a superellipsoid, which best fits the actual particle shape, is found from the considered range. After that, the coefficients of the translation, rotation and deformation resistance tensors are obtained from the present model and compared to the results of other available models. In the conclusion, a superior accuracy of the present model, for the considered range of particles, is established. To the best of the authors knowledge, this is also one of the first models to extend the torque prediction capabilities beyond sphere and prolate particles. At the same time, the model was demonstrated to be simple to implement and very conservative with the computational resources. As such, it is suitable for large scale studies of dispersed two-phase flows, with a large number of particles.

Funder

Deutsche Forschungsgemeinschaft

Slovenian Research Agency

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3