State-Estimator-Based Asynchronous Repetitive Control of Discrete-Time Markovian Switching Systems

Author:

Liu Xinghua1,Ma Guoqi2,Pagilla Prabhakar R.2ORCID,Ge Shuzhi Sam3

Affiliation:

1. School of Electrical Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China

2. Department of Mechanical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA

3. Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583

Abstract

This paper investigates the problem of asynchronous repetitive control for a class of discrete-time Markovian switching systems. The control goal is to track a given periodic reference without steady-state error. To achieve this goal, an asynchronous repetitive controller that renders the overall closed-loop switched system mean square stable is proposed. To reflect realistic scenarios, the proposed approach does not assume that the system modes are available synchronously to the controller but instead designs a detector that provides estimated values of the system modes to the controller. Based on a detected-mode-dependent estimator, the plant and asynchronous repetitive controller are formulated as a closed-loop stochastic system. By utilizing tools from stochastic Lyapunov–Krasovskii stability theory, we develop sufficient conditions in terms of linear matrix inequalities (LMIs) such that the closed-loop system is mean square stable and also simultaneously establish a synthesis procedure for obtaining the gain matrices. We provide numerical simulations on an electrical circuit switched system to illustrate the approach.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3