A Numerical Investigation on the Hydraulic Fracturing Effect of Water Inrush during Tunnel Excavation

Author:

Zhang Quan123ORCID,Huang Bingxiang1ORCID,He Manchao3,Guo Shan3

Affiliation:

1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China

2. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

3. State Key Laboratory of Geomechanics & Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

When a high-pressure water source is located near a tunnel under excavation, water inrush is commonly associated with a hydraulic fracturing effect. To study the hydraulic fracturing effect of water inrush (HFEWI), flow-rock failure process analysis (F-RFPA2D) was adopted to simulate the water inrush process. The simulated results indicated that a stress disturbance area formed in front of the excavation face and that a hydraulic fracture zone formed in front of the karst cavity. Similarly, stress concentrations formed in front of the excavation face and the karst cavity. The hydraulic fracturing effect was characterized by stress concentration, and the local hydraulic crack propagation was the result of stress concentration. In addition, a pore pressure gradient formed in the crack-free area of the surrounding rock, and the occurrence of hydraulic cracking was the root cause of the significant change in water flow. When the hydraulic cracks initially formed and expanded, the zone of crack activity was large. As the cracks continued to expand, the range of activity decreased and finally concentrated directly in front of the excavation face. Additionally, the shapes of the water inrush channel obtained by the experimentation and numerical simulation were basically the same: semielliptical. During the evolution of hydraulic crack initiation, expansion, and penetration, the bottom of the excavated borehole was initially dry and then experienced seepage and water inrush. Finally, the minimum safe thickness of the rock wall was calculated to provide a safety guideline for this type of water inrush.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3