Application of Improved VMD-LSTM Model in Sports Artificial Intelligence

Author:

Zhang Tiancong1,Fu Caihua2ORCID

Affiliation:

1. School of Physical Education, Sanya University, Sanya 572000, China

2. School of Management, Sanya University, Sanya 572000, China

Abstract

In recent years, with the rapid development of a new generation of artificial intelligence technology, how to deeply apply artificial intelligence technology to physical education and break through the limitations of time-space scenarios and knowledge transfer methods in traditional models has become a key issue in intelligent physical education in the era of artificial intelligence. In order to realize the online monitoring of wearable devices with artificial intelligence in sports and overcome the problem of low recognition accuracy of electrocardiogram, blood oxygen, and respiratory signals in many cases, this paper proposes a combination of variational modal decomposition based on the maximum envelope kurtosis method. Long-short-term neural network (VMD-LSTM) monitoring method for wearable sports equipment. Through experimental analysis and verification, the current signal of the VMD model shows a trend of fluctuating from large to stable and then to large with motion, while the training accuracy of LSTM after the 150th iteration is 94.09%, which shows that the coupling model VMD LSTM can better predict the direction of sports artificial intelligence. In addition, although the training time of the BP neural network is shorter than that of the LSTM model, there is a large gap between the recognition effect and the LSTM, and there are also large differences between different neural network structures. This shows that the VMD-LSTM model has broad application prospects in such models.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3